L8543319

09/2023 rev 3

LUCE W LUCE SH W LUCE WP

Installation and maintenance manual for sliding doors

1. Preliminary information	page 3
1.1 General safety warnings	
1.2 CE marking and European Directives	
2. Technical data	page 4
3. Type of installation	page 5
4. Procedure to install the automation and sliding doors	page 6
4.1 Box assembly	
4.2 Doors adjustment and assembly	
4.3 Stainless steel IP65 box AISI316L	Belt adjustment

Dear Client, thank you for choosing us. You are reminded to read the following installation and use instructions of the automatism carefully, to obtain the best performance. We also remind you that assembly of this product must only be carried out by professionals.

Before starting installation or activating an automatic wicket, an inspection must be carried out on site by professionally competent staff, to take the measures of the wall compartment, the fixture and the automation.
This inspection is necessary to assess the risks and to choose and apply the most appropriate solutions based on the type of pedestrian traffic (heavy, limited, one-directional, two-directional, etc.), the type of users (elderly, disabled, children, etc.) and the presence of potential hazards or particular local situations.

1.1 GENERAL SAFETY WARNINGS

This assembly, installation and maintenance manual is exclusively for professionally competent staff. Read the instructions carefully before starting to install the product.
Wrong installation can be a source of danger. The packaging materials (plastic, polystyrene, etc.) should not be disposed of in the environment and must not be left within children's reach since they are potential sources of danger.
Before starting installation, check the product's integrity. Do not install the product in an explosive environment and atmosphere: the presence of flammable gas or fumes poses a serious danger for health.
Before installing the automatism, make all the structural changes relating to implementation of precautions for safety and protection or segregation of all the crushing, shearing, transfer and danger zones in general.
Check the existing structure has the necessary robustness and stability requirements. MYONE S.r.I. cannot be held responsible for any non-compliance with good practice in the construction of fixtures to automate, as well as deformations which occur during use. The safety devices (presence sensors, photocells, etc.) must be installed while taking into consideration: the standards and directives in force, good practice techniques, the installation environment, the operating logic of the system and the forces developed by the automatic wicket.
Apply the signs planned by the standards in force to identify the danger zones.
Each installation must have visible indication of the identification data of the automatic wicket gate.

1.2 CE MARKING AND EUROPEAN DIRECTIVES

MYONE automations for wicket sliding doors are designed and built in compliance with the safety requirements of the European standard EN 16005 and are equipped with CE marking in compliance with the Electromagnetic Compatibility Directive (2014/30/EU).
MYONE automations are equipped with a Declaration of Incorporation for the Machinery Directive (2006/42/EC).

CPursuant to the Machinery Directive (2006/42/EC) the installer implementing the automatic wicket has the same obligations as the manufacturer of the machine and, as such, must:

- prepare the technical file which must contain the documents indicated in Annex V of the Machinery Directive;
(The technical file must be kept and maintained available to the competent national authorities for at least ten years starting from the date of automatic wicket manufacture);
- draft the CE Declaration of Conformity according to Annex II-A of the Machinery Directive and deliver it to the client;
- affix the CE marking on the automatic wicket pursuant to point 1.7.3 of Annex I of the Machinery Directive.

The data outined in this manual were drafted and checked with utmost attention.
However, MYONE S.r.l. cannot be held in any way liable for possible errors, omissions or approximations due to technical or graphical requirements.
MYONE S.r.I. reserves the right to make changes to improve the products. For this reason, the illustrations and information that appear in this document should be considered non-binding.
This edition of the manual deletes and replaces the previous ones. In case of changes, a new edition will be issued.

Using LUCE to move a very heavy door may reduce the performance indicated.
Complying with the working temperature range declared in the technical data would allow you to obtain the use frequency value in the table.
The data are detected in the standard use conditions and cannot be guaranteed for each individual case.
Each automatic input has variable elements, such as: friction, balancing, environmental conditions which can substantially change both the working duration and quality of the automatic input or part of its components.
The installation technician is responsible for implementing the safety coefficients on each particular installation.

Technical data	LUCE W	LUCE SH W	LUCE WP
Model	Automatic sliding door for pedestrian walkways		
Maximum dimensions of the automation: Height x Depth x Length	$120 \times 150 \times 6600 \mathrm{~mm}$		
Maximum weight of 1-leaf door: Maximum weight of 2-leaf door:	$\begin{gathered} 200 \mathrm{~kg} \\ 2 \times 130 \mathrm{~kg} \end{gathered}$	$\begin{gathered} 400 \mathrm{~kg} \\ 2 \times 250 \mathrm{~kg} \end{gathered}$	$\begin{gathered} 200 \mathrm{~kg} \\ 2 \times 130 \mathrm{~kg} \end{gathered}$
Maximum opening and closure speed: 1 leaf sliding door 2 leaf sliding door	$\begin{aligned} & 0,8 \mathrm{~m} / \mathrm{s} \\ & 1,6 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{gathered} 0,35 \mathrm{~m} / \mathrm{s} \\ 0,7 \mathrm{~m} / \mathrm{s} \end{gathered}$	$\begin{aligned} & 0,8 \mathrm{~m} / \mathrm{s} \\ & 1,6 \mathrm{~m} / \mathrm{s} \end{aligned}$
Use frequency	Continuous operation $=100 \%$		
Extended range power supply Nominal power Stand-by	$\begin{gathered} 100-240 \text { Vca } 50 / 60 \mathrm{~Hz} \\ 70 \mathrm{~W} \\ 3 \mathrm{~W} \end{gathered}$		
Nominal load	150 N		
Protection level	IP 65		IP 65 motor box IP 56 electronic control box
Weight length 1900 mm (minimum automation length) length 6500 mm (maximum automation length)	$\begin{aligned} & 18 \mathrm{Kg} \\ & 30 \mathrm{Kg} \end{aligned}$	$\begin{aligned} & 22 \mathrm{Kg} \\ & 35 \mathrm{Kg} \end{aligned}$	$\begin{aligned} & 18 \mathrm{Kg} \\ & 30 \mathrm{Kg} \end{aligned}$
Operating temperature			
Parameters adjustment: basic and advanced adjustments	Buttons and Display		
Connection to command and safety devices	Specific connection terminal boards		
Output for external accessories supply	$24 \mathrm{Vdc}(1 \mathrm{Amax})$		
Memory to save data and adjustments of the door	USB port		
Compliance with specific regulations	-	-	IEC60364-7-702 CEI 64-8/7-702 (Low-voltage electrical installations - Swimming pools and fountains)

Ref.	Code	Description
1	LUCEW1902 LUCEW1901 LUCESHW1902 LUCESHW1901 LUCEWP1902 LUCEWP1901	Automation for sliding door with beam length 1900 2-leaf Automation for sliding door with beam length 1900 1-leaf Automation for heavy sliding door with beam length 1900 2-leaf
2	3utomation for heavy sliding door with beam length 1900 1-leaf 31RD0001 Automation for sliding door with beam length 1900 2-leaf Automation for sliding door with beam length 1900 1-leaf	
3	31SR0009 31SR0010 AQA	Safety sensors (transit area) (N.B. To guarantee protection of the passage compartment, 2 sensors are necessary, one per side)
4	-	Rotary selector for sliding door via external cable. Rotary selector for sliding door via external cable with key. Selector switch/electronic programmer via cable for sliding door
5	31RP0001 (optional) 31RP0002 (optional)	Power cable for automation connection to the electricity mains (not supplied) (for LUCE W and LUCE SH W)
6	-	Side area safety sensors for leaf sliding
7	99BA0004 (optional)	Remote electronic control box (for LUCE WP, mains power cable not supplied)

N.B: The components and codes indicated are those mostly used on automatic sliding door systems. However, the complete range of devices and accessories is available on the sales pricelist.
For system installation, use accessories and safety devices approved by MYONE S.r.I.

Installation of an automatic sliding door, carried out by professionally competent staff, can only take place after inspections on site (as indicated in chapter 1) and having measured and created the fixture and the automation.

Fastening to the wall of the box profile must be safe and adequate for the weight of the doors. Distribute the fastening points every $500 \div 800 \mathrm{~mm}$ (LUCE W and LUCE WP) or every $250 \div 350 \mathrm{~mm}$ (LUCE SHW), using adequate plugs and screws, not supplied by us, depending on the wall on which fixing is carried out. Drill in correspondence with the groove provided inside the box.
N.B. The wall must be straight and smooth, otherwise you have to prepare adequate iron shims or plates to fasten the box to, for correct levelling.

4.1 BOX ASSEMBLY

4.2 DOORS ADJUSTMENT AND ASSEMBLY

Fasten the sliding doors to the carriages using the 8MA screws.
Close the doors and adjust the height and depth, as indicated in the figure.
Adjust the position of the upper stop castors to prevent the carriage from exiting the sliding profile.

Move the doors by hand for the entire stroke, check that the movement is free and without friction and that all the castors rest on the sliding profile.
Check that the lower part of the door is correctly guided on the floor slide. Adjust the position of the mechanical stop brackets to limit the stroke of the doors in the desired position.

(A) = only on LUCE SHW

4.3 STAINLESS STEEL IP65 BOX AISI316L

4.4 BELT ADJUSTMENT

Adjust tightening of the serrated belt using the return unit, as indicated in the figure:
Loosen the screws (a), unscrew the counter-nut (c), screw in the screw (b) until the belt is perfectly tightened and fasten the counter-nut (c) again. ATTENTION: wrong adjustment of the belt compromises the good operation of the automation.

Place the battery-powered device inside the stainless steel box (LUCE W / LUCE SH W) or inside the plastic box (LUCE WP).
Connect the battery-powered device to the BAT connector of the electronic control, using the cable supplied (see paragraph 7).
Check the battery is connected to the electronic board.
Connect the mains supply automation and wait at least 30 minutes to allow the battery to recharge.
N.B. to allow recharge, the battery-powered device must always be connected to the electronic control. In the event of long periods of automatic door non-use, disconnect the battery from the electronic board.
For the operating mode of the automation with the battery-powered device, see the BASE menu - BTMD parameter.

6 Cover opening and locking

The cover casing can be locked in the opening position to facilitate installation operations:
1 - Unscrew and remove the 2 self-tapping screws \vee to the right and left of the cover for opening as shown in the figure.
2 - Push the casing towards the wall to fasten it
When the casing is closed, fasten it to the heads with the self-tapping screws V supplied.
To fasten the casing, you need a space of at least 20 mm over the profile of the door.

In the case of installation where there is no space on the sides to screw the self-tapping screws (tunnel installation), make 2 holes in the cover with the measurements indicated in the figure, insert the M6 nut on the right and left in the appropriate seat of the heads and, once closed, lock the cover by screwing the two M6 screws.

Ref.	Code	Terminals	Description
$\mathbf{1}$		MAINS IN	Power cable for automation connection to the electricity mains. (not supplied)
$\mathbf{2}$			CP.LUCE (LUCEW / LUCE SH W) / CP.LUCE A (LUCE WP) electronic control
$\mathbf{3}$		MOT	Direct current gearmotor ENC
$\mathbf{4}$	99BA0004	BAT	KIT

7.1 GENERAL ELECTRICAL SAFETY WARNINGS

The installation, electrical connections and adjustments must be carried out in compliance with good practice and the standards in force.
Before connecting the electrical power supply, ensure the plate data correspond to those of the electrical distribution mains. On the power supply mains, install an omnipolar switch/sectioning device with an opening distance of the contacts equal or over 3 mm . This switch must be protected from unauthorised activations.
Check upstream of the electrical system that there is an adequate differential switch and an overcurrent safety device.
Connect the automation to an efficient earthing system installed as indicated by safety standards in force.
During installation, maintenance and repair operations, disconnect the power supply before opening the casing to have access to the electrical parts.
The electronic parts must be handled using anti-static, conductive wrist straps connected to the ground.
MYONE S.r.I. cannot be held in any way liable if components are installed which are incompatible for safety purposes and for good operation.
For possible repair or replacement of products, only original spare parts must be used.
The nameplate data can be found on the label positioned in the header.

7.2 ELECTRICAL POWER SUPPLY CONNECTION

Use a power supply cable for connection to the power supply mains.
The power supply cable can be connected to an electrical socket (not supplied by us), prepared near the automation head.
If an electrical socket is not present near the automation, connect to the electrical mains as follows: drill the aluminium box at the top, protect passage of the power supply cable using cable glands (not supplied by us) to eliminate sharp edges which could damage the power cable, and connect the cable to the electricity supply.
Connection to the electrical power supply, in the section outside automation, must take place via an independent duct and separated from the connections to the command and safety devices.
For LIGHT WP: place the plastic box of the electronic control in zone 2 according to the classification of IEC 60364-7-702, i.e. approximately at least 2 m from the water horizontally, and at least 2.5 m vertically. Refer to the standard for more details. In order to maintain the IP protection rating of the plastic box, holes must be drilled where necessary and cable glands must be used in accordance with the relevant requirements.

7.3 ELECTRONIC CONTROL TERMINAL BOARDS

When you connect the safety devices, remove the jumpers of the corresponding terminals.

CP.LUCE	Description
Terminal J3 (green)	Test output (+24V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/OS-R terminals.
TS	N.C. safety contact in opening side B (right hand side of automation view). When the door is opening, opening the contact causes the slowing down of the door in the last 500 mm (the safety function of the OS-R terminal can be modified using the advanced parameters menu). N.B. Connect the safety devices with testing (see TS terminal) and remove the TS/OS-R jumper.
$\mathbf{+ 2 4 V} / \mathbf{O S}$-R	$\mathbf{2 4}$ Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
$\mathbf{+ 2 4 V} / \mathbf{- 2 4 V}$	

Terminals J10 (black)	Description
TS	Test output (+24 V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/OS-L terminals.
+24V / OS-L	N.C. safety contact in opening side A (left hand side of automation view). When the door is opening, opening the contact causes the slowing down of the door in the last 500 mm (the safety function of the OS-L terminal can be modified using the advanced parameters menu). N.B. Connect the safety devices with testing (see TS terminal) and remove the TS/OS-L jumper.
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+\|-24V).
Terminal J16 (green)	Description
TS	Test output (+24V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/CS-E terminals.
+24V / CS-E	N.C. safety contact on passage compartment side B (external side of automation view). When the door is closing, opening of the contact causes movement inversion. N.B. Connect the safety devices with testing (see TS terminal) and remove the TS - CS-E jumper.
+24V / OP-E	N.O. opening contact side B (external side of automation view).
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminals J15 (black)	Description
TS	Test output (+24V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/CS-I terminals.
+24V /CS-I	N.C. safety contact on passage compartment side A (internal side of automation view). When the door is closing, opening of the contact causes movement inversion. N.B. Connect the safety devices with testing (see TS terminal) and remove the TS - CS-I jumper.
+24V / OP-I	N.O. opening contact side A (internal side of automation view).
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+\|- 24V).
Terminals J17 (green)	Description
S	Rotary selector signal 31SR0009/ 31SR0010
+24V/-24V	Rotary selector power supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminals J20 (grey)	Description
L/ H / +24V / -24 V	BUS connection to the electronic selector/programmer AQA and/or for door synchronisation/interlocking
Terminals J4 (grey)	Description
KO	N.O. contact of priority opening, to be connected to devices accessible only to authorised staff using keys or codes.
102	Input terminal for general use. Using the ADV menu > SIO2, you can associate the IO2 terminal with a specific function.
101	Input terminal for general use. Using the ADV menu > SIO1, you can associate the IO1 terminal with a specific function.
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminals J2 (grey)	Description
LK	Output for activation of the electromechanical lock (+/Red - -/Black) (Select the type of lock using TYLK logic)
Terminals J6	Description
ENC	Rapid connector for angular sensor connection (Encoder)
Terminals J1 (green)	Description
MOT	Connector for motor connection
Terminals J9 (green)	Description
MAINS IN	Mains input 100-240Vac 50/60Hz
Connector J7	Description
USB	USB port. Enables saving and loading of the control unit configuration, saving alarms and carrying out any FW update.

CP.LUCE A	
Terminal J3 (green)	Description
TS	Test output (+24V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/OS-R terminals.
+24V/ OS	N.C. safety contact in opening side B (right hand side of automation view). When the door is opening, opening the contact causes the slowing down of the door in the last 500 mm (the safety function of the OS terminal can be modified using the advanced parameters menu). N.B. Connect the safety devices with testing (see TS terminal) and remove the TS/OS jumper.
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/- 24V).
Terminal J10 (Black)	Description
TS	Test output (+24V). Connect the safety devices with testing (compliance with standard EN 16005), as indicated in the following chapters. N.B. For devices without testing, connect the N.C. contact to the TS/OS terminals.
+24V/ OS	N.C. safety contact on the passageway. When the door is closing, opening of the contact inverts the movement. N.B. Connect safety devices with test (see TS terminal), and remove the TS - CS jumper.
+24V / -24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/- 24V).
Terminal J5 (Grey)	Description
+24V/OP-E	N.O. opening contact side B (external side of automation view).
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminal J9 (Black)	Description
+24V/ OP-I	N.O. opening contact side A (internal side of automation view).
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminal J17 (Green)	Description
S	Rotary selector signal 31SR0003
+24V/-24V	Rotary selector power supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminal J20 (Grey)	Description
L/ H / +24V / -24 V	BUS connection to the electronic selector/programmer AQA and/or for door synchronisation/interlocking
Terminal J4 (Grey)	Description
13	N.O. contact of priority opening, to connect to the devices only accessible to authorised staff using keys or codes.
102	Input terminal for general use. Using the ADV menu > SIO2, you can associate the IO2 terminal with a specific function.
101	Input terminal for general use. Using the ADV menu > SIO1, you can associate the IO1 terminal with a specific function.
+24V/-24V	24 Vdc output for external accessories supply. Maximum absorption of 1 A corresponding to the sum of all the terminals (+/-24V).
Terminal J2 (Grey)	Description
LK	Output for activation of the electromechanical lock (+/Red --/Black) (Select the type of lock using TYLK logic)

Terminal J6	Description
ENC	Rapid connector for angular sensor connection (Encoder)
Terminal J1 (verde)	Description
MOT	Connector for motor connection
	Description
MAINS IN	Mains power input 100-240Vac 50/60Hz
Terminal J7	Description
USB	USB port. Enables saving and loading of the control unit configuration, saving alarms and carrying out any FW update.

7.4 ELECTRICAL CONNECTIONS OF FUNCTIONS SELECTOR 31SR0009 - 31SR0010

Connect the terminals ($+24 \mathrm{~V},-24 \mathrm{~V}, \mathrm{~S}$) on the functions selector, using the cable not supplied by us, for terminals ($+24 \mathrm{~V},-24 \mathrm{~V}, \mathrm{~S}$) of the electronic control. N.B. For lengths over 10 metres, use a cable with 2 twisted pairs.

Symbol	Description The door is open and remains open. Allows bidirectional door opening. The door is partially open (settable from 10% to 90% of the stroke). Allows unidirectional operation from the internal/external side of the door. NIGHT CLOSURE The door closes and remains locked (if a lock is present), disabling the radar.

7.5 SAFETY SENSOR ELECTRICAL CONNECTIONS (INTERNAL/EXTERNAL TRANSIT AREA)

Connect the sensor, using the cable supplied, to the terminals of the electronic control as follows:

Terminal	31RD0001 (Primetec B)	31RD0003 (IXIO-DT1)	Notes
TS	Pink	Red	Remove the jumper
CS-E / CS-I	Blue	Grey	
OP-E / OP-I	Green	White	
+24 V	Brown + Yellow + Red	Green+Yellow+Pink	
-24 V	White + Grey	Brown+Blue	

For further information, refer to the installation manual of the sensor.

Connect the sensor, using the cable supplied, to the terminals of the electronic control as follows:

Terminal		(A) 31RD0001 (Primetec B)	(B) 31RD0001 (Primetec B)	Notes
J10	TS	Pink	-	
J10	CS	-	Blue	Remove the jumper
J5	OP-E	Green	-	
J9	OP-I	-	Green	
J5 / J9 / J10	+24V	Brown + Yellow	Pink + Red + Brown + Yellow	
J5 / J9 / J10	-24V	Blue + White + Grey	White	
-		Red	Grey	Connect between the two sensors

Terminal		(A) 31RD0003 (IXIO-DT1)	(B) 31RD0003 (IXIO-DT1)	Notes
J 10	TS	Red	-	
J 10	CS	-	Grey	Remove the jumper
J 5	OP-E	White	-	
J 9	OP-I	-	White	
$\mathrm{J} 5 / \mathrm{J} 9 / \mathrm{J} 10$	+24V	Brown + Yellow	Pink + Red + Brown + Yellow	
$\mathrm{J} / \mathrm{Jg} / \mathrm{J} 10$	-24V	Green + Blue + Grey	Green	
-	Pink	Blue	Connect between the two sensors	

For further information, refer to the installation manual of the sensor.

7.6 SAFETY SENSORS ELECTRICAL CONNECTIONS (DOOR SLIDING SIDE AREA)

Connect the sensor, using the cable supplied, to the terminals of the electronic control as follows:

Terminal	31RP0001 (PrimeScan B)	31RP0002 (lxio-ST)	Notes
TS	Pink	Red	
OS-L/OS-R	Blue	Grey	Remove the jumper
+24 V	Brown + Red	Brown+Pink	
-24 V	White + Grey	Green+Blue	

For further information, refer to the installation manual of the sensor.

Connect the sensor, using the cable supplied, to the terminals of the electronic control as follows:

Terminal	(C) 31RP0001 (PrimeScan B)	(D) 31RP0001 (PrimeScan B)	Notes
TS	Pink	-	
OS	-	Blue	Remove the jumper
+24 V	Brown	Pink + Red + Brown	
-24 V	Blue + White + Grey	White	Connect between the two sensors
-	Red	Grey	Notes
Terminal	(C) 31RP0002 (IXIO-ST)	(D) 31RP0002 (IXIO-ST)	Remove the jumper
TS	Red	-	
OS	-	Grey	
$+24 V$	Brown	Red + Pink + Brown	Connect between the two sensors
$-24 V$	Green		
-	Bink	Breen + Grey	

For further information, refer to the installation manual of the sensor.

7.7 ELECTRICAL CONNECTION OF PHOTOCELLS (32FT0701)

Connect the sensor, using the cable supplied, to the terminals of the electronic control as follows:

Morsetto	Fotocellula	Note
TS	TX - Black	Remove the jumper
CS-I	RX - Black	
OP-I	-	
+24	Brown	
-24	Blue	

If the TS is not connected, set menu parameter ADV > TS = NO For further information, refer to the installation manual of the photocell.

The CP.LUCE control unit is equipped with 5 buttons and 4 alphanumerical displays to set all the necessary adjustments.
Operation of the 4 buttons is indicated in the table

Buttons	Description
PP	Selection button, each time it is pressed you enter the selected parameter. Saving button by pressing for 1 second you "SAVE" the selected value. ENTER ESC \uparrowScroll button, each time it is pressed, you select a menu item or increase the value of the selected item.
\downarrow	Scroll button, each time it is pressed, you select a menu item or reduce the value of the selected item

8.1 MENUS LIST

$\left.\begin{array}{ll}\text { - BASE } & \text { basic parameters } \\ \text { - INFO } & \text { board information } \\ \text { - MEM } & \begin{array}{l}\text { memory management } \\ \text { - ADV } \\ \text { - SEL }\end{array} \\ \text { advanced parameters } \\ \text { selector }\end{array}\right\}$ push \uparrow or \downarrow to enter other menus

8.2 BASE MENU

ID	Description	Values	Notes
OPEN	Opening direction selection	$\begin{aligned} & \text { <> -> } \\ & \text { <- } \end{aligned}$	Double door / single door opening to the right Single door opening to the left
VOP	Opening speed	100-800	[mm/s]
VCL	Closure speed	100-800	[mm/s]
TAC	Automatic closure time	$\begin{aligned} & \text { NO } \\ & 1-30 \end{aligned}$	$\mathrm{NO}=$ automatic closure disabled [s]
PUSH	Automation thrust force	1-10	$1=\min , 10=\max$
PART	Percentage of partial opening	10-90	[\%]
BTMD	Battery operating mode	NO NOPN OPEN UNLK CONT EMER	Battery not considered In case of power failure, if the operating mode is in night mode, an opening is performed. If the operating mode is in daytime mode, it behaves as in continuous operation. In the event of a power failure, the door also opens in night stop mode Unlock Continuous operation Emergency opening
RAMP	Acceleration time	100-2000	$100=$ Maximum acceleration [ms]

8.3 INFO MENU

ID	Description	Valeurs	Notes
VER	Fw version	XXXX	XXXX = firmware version

8.4 MEM MENU

ID	Description	Values	Notes
FSET	Back to factory settings	NO/YES	
FW	Fw upgrade on board	Name of upgrade files *(NOMS)	Insert USB flash drive. Select the Firmware version to upgrade from those available. The upgrade files should be inserted in the path MYONEDS/ SLIDING/FW/ *If NOMS appears, the USB flash drive is not detected or absent
SIN	Settings loading from USB	NO/YES *(NOMS)	Insert USB flash drive. Loading files from MYONEDS/SLIDING/SET/ Select YES and hold ENTER until the word SAVE appears. *If NOMS appears, the USB flash drive is not detected or absent
SOUT	Settings saving on USB key	NO/YES *(NOMS)	Insert USB flash drive. File saving in MYONEDS/SLIDING/SET/ Select YES and hold ENTER until the word SAVE appears. *If NOMS appears, the USB flash drive is not detected or absent

8.5 ADV (Advanced) menu

ID	Description	Values	Notes
OSSM	Slowing down space of the door during the opening in case of side safety sensor activation (OS-R, OS-L) ATTENTION: when selecting this parameter you must consider the risk assessment	NO	Disabled function
		100-500[mm]	Space in [mm] at reduced speed in the final part of the stroke (equal to $100 \mathrm{~mm} / \mathrm{s}$)
		YES	Reduced speed on all the passage compartment
OSSS	Stopping distance of the door during the opening in case of side safety sensor activation(OS-R, OS-L)	NO	Disabled function
		100-500[mm]	Stopping distance in [mm] in the final part of the stroke
		YES	Lateral safety turns into stop function in both open and close
TYLK	Type of lock	LK1	Secure monostable lock (99EB0001-99EB0006)
		LK2	Safe monostable lock (99EB0003)
		LK3	Not used
ELLK	Locking operating mode	AUTO	Automatic mode: automatic detection of the lock presence, if present the locking control adapts to the operating mode of the door selected
		LOCK	Locking always in locked position in closed door
		UNLK	Lock always unlocked (except in night mode)
PIPP	Leaf open check enabled	NO/YES	YES = check enabled, on each opening, the open position is checked by pushing on the leaf stop
PUCL	Thrust force with door closed (anti-wind function)	NO	No force
		$\begin{aligned} & \text { MAX } \\ & \text { MED } \end{aligned}$ MIN	3 force levels applied
HOLD	Maintenance force with door open (anti-wind function)	NO	No maintenance of open door
		MAX MED MIN	3 maximum strength levels applicable to keep the door in the open position
TS	Safety sensors test enabling	NO/YES	YES $=$ Sensors test enabled
PUGO	Push and Go	NO/YES	YES = Manual movement of the leaf from closed position causes opening
VTAC	Variable automatic closure time	NO/YES	YES = In case of heavy passage of people, after 5 consecutive inversions the door increases the automatic closure time by 5 seconds
MOT	Manual sliding configuration of the door (operation only with door powered)	OC	Windings open - Manual opening with little friction
		SC	Short-circuited motor windings Manual opening of the door with greater resistance

SIO1	Input/Output IO1 setting of the terminal J4. If used as input, connect the device contact to the terminals IO1/+24V. If used as output, connect the load to the terminals IO1/-24V (ATTENTION!: 30 mA max). For devices with higher absorption, use a support relay	NO	年

8.6 SEL MENU

ID	Description	Valeurs	Notes
MODE	Operating mode	NO	No mode selected
		1DPA	Partial unidirectional
		PA	Partial
		1D	Unidirectional
		CLOS	Door closed
		AUTO	Automatic/day mode
		OPEN	Door open
SECL	Selector safety level	NO/CODE	No protection / Code protection.
DLAY	Maintenance time of the unidirectional opening mode during night stop	$1 \mathrm{sec}-5 \mathrm{~min}$	The night stop procedure (night mode) includes passage using the unidirectional mode, held for the time specified in DLAY, to allow the exit, but not entrance
SAM1	If in the $\mathrm{SIO1/SIO} 2$ menu, the item SAM is selected, you can choose which operating mode to set when the contact $(\mathrm{SIO} 1 / \mathrm{SIO} 2)$ is HIGH	CLOS	Door closed
		AUTO	Automatic/day mode
		OPEN	Door open
		1DPA	Partial unidirectional
		PA	Partial
		1D	Unidirectional
SAM2	If in the $\mathrm{SIO1/SIO2} \mathrm{menu} ,\mathrm{the} \mathrm{item} \mathrm{SAM} \mathrm{is} \mathrm{selected}$, you can choose which operating mode to set when the contact ($\mathrm{SIO} 1 / \mathrm{SIO} 2$) is LOW	CLOS	Door closed
		AUTO	Automatic/day mode
		OPEN	Door open
		1DPA	Partial unidirectional
		PA	Partial
		1D	Unidirectional
RPEN	Enable remote programmer mode	NO/YES	RPEN set to YES allows you to activate the remote programmer mode, or if set to NO it does not allow you to enable the remote programmer mode.
CODE	Code management (from keypad or from NFC tags)	NO	No storage
		DPRG	Deletion of the remote programmer mode enabling codes only
		DALL	Complete deletion of the code list
		DELC	Code deletion
		PROG	New code saving for remote programmer mode activation
		OPEN	New priority open command code saving
		SEL	New code saving for selector unlocking (function selector mode)
CIN	Import codes	NO/YES *(NOMS)	It allows you to import the code list stored on a USB flash drive *If the word NOMS appears, the USB flash drive is not detected or is absent
COUT	Export codes	NO/YES *(NOMS)	It allows you to export the code list on a USB flash drive *If the word NOMS appears, the USB flash drive is not detected or is absent
SHOW	Display of possible anomalies and operating information on the display	ALL WARN	Display of active contacts of the terminal boards + warning Warning only

9.1 ALARMS

Code	Description	Notes
W001	Encoder fault	Faulty encoder. The automation stops.
W002	Motor short circuit	Overcurrent in the motor has been detected. The control blocks the movement for 1.5s then tries to power the motor again
W003	Motor control error	Error on motor control circuit. The automation stops
W004	Current reading circuits fault	Incorrect reading of the motor currents. The automation stops
W010	Inverted movement	Detected movement in the opposite direction. The automation stops. During the learning phase, a longer stroke than the maximum permitted was detected. The automation stops.
W012	Stroke too long.	During the learning phase, a shorter stroke than the minimum permitted was detected. The automation stops.
W013	Beyond the stop	During the operation, a longer stroke than the acquired one was detected. The automation stops.
W014	Motor absentfaulty	Detected in approx. 3s, if the motor was detached or faulty (no current absorption)
W100	Incorrect user program, Absent	Software upgrade unsuccessful or corrupted. Switch off the board and switch it on again (with the USB pen inserted) to restart the upgrade procedure.

9.2 EVENTS

Code	Description	Notes
W126	Internal error	
W128	No mains power supply	Enabled if an operating mode is set which includes battery presence
W129	No battery	Insufficient battery voltage detected
W130	Flat battery	The following opening manoeuvre is carried out with open safe mode enabled
W140	OS-R safety test failed	The following opening manoeuvre is carried out with open safe mode enabled
W141	OS-L safety test failed	The door remains open
W142	CS-I safety test failed	The door remains open
W143	CS-E safety test failed	Manoeuvre speed lowered to safe value /s]
W145	High motor temperature	Door stops until the motor temperature returns to safety values
W146	Motor overtemperature	Anomalous lock power supply current (too high)
W148	Lock overcurrent	Obstacle detected during the opening manoeuvre. The door stops and closes once the automatic closure time is up
W150	Obstacle during the opening	Obstacle detected during the closing manoeuvre. The door reopens
W151	Obstacle during the closure	Door cannot start opening manoeuvre. The door does not accept commands for 5s
W152	Door stucked in closing position	Door cannot start closing manoeuvre. The door does not accept commands for 5s
W153	Door stucked in opening position	Communication interrupted between coupled boards or non-coherent roles in the coupled operating mode (e.g. both automations are selected as INT or EXT in interlocked operation/ automations not simultaneously powered)
W160	Communication alarm	
W256	Board activation	
W257	Software update start-up	Enabled once the automation has carried out the specified number of manoeuvres from the maintenance parameter
W320	Maintenance event	

10.1 INTRODUCTION

Installation description for synchronised and/or interlocked automation modes

10.2 CONNECTION WIRING

KINDLY NOTE THAT THE AUTOMATIONS HAVE TO BE POWERED SIMULTANEOUSLY IN ORDER TO HAVE A PROPER START-UP
The interlock and synchronisation functions use the communication bus identified on the board by the terminal board ' $[\mathrm{LH}+24-24]$ '.
First of all, the automations that you want to synchronise or interlock must be connected by wiring the 'L H +24 ' signals
Example of wiring two automations:

Example of wiring 4 automations (case of two synchronized and interlocked automation groups):

10.3 SYNCHRONISATION OF TWO AUTOMATIONS

Once the communication bus has been correctly wired, the following settings must be carried out to activate the synchronisation of two automations:

- menu ADV>SYNC:

Set an automation on MST1, master automation.
Set the other automation to SLV1, slave automation.
NOTE: it is possible to define a maximum of 2 units of synchronised doors. The doors that make up unit ' 1 ' are identified by [MST1, SLV1], while the doors that make up unit '2' are identified by setting [MST2, SLV2].

- If you need to activate a second unit of doors, repeat the ADV/SYNC settings by selecting MST2 and SLV2 on the automations that will form unit '2'

10.3.1 Synchronisation operation

When the system is switched on, at the first opening manoeuvre, the doors will open one at a time, first the master, then the slave. Once the manoeuvring space has been acquired, the movement will be synchronised according to the selected settings.

10.4 INTERLOCKING OF TWO AUTOMATIONS

Once the communication bus has been correctly wired, the following settings must be carried out to activate the interlocking of two automations:

- menu ADV>INK:

It is necessary to distinguish between automation on the internal side and automation on the external side
Select the INT item to indicate the automation on the internal side and the EXT item to indicate the automation on the external side
It is possible to associate the activation of a $\mathrm{SIO1/SIO2} \mathrm{output} \mathrm{to} \mathrm{the} \mathrm{interlock} \mathrm{operation} ,\mathrm{for} \mathrm{example} \mathrm{to} \mathrm{command} \mathrm{a} \mathrm{light} \mathrm{signalling} \mathrm{the} \mathrm{status} \mathrm{of} \mathrm{the} \mathrm{door:}$

- menu ADV>SIO1/SIO2:
select the SIGN item
- menu ADV>SIGN:
select the INK item
The IO1/IO2 output will be activated when the door is locked due to the interlock (with this signal, for example, it will be possible to turn on the red light signal to indicate that the passage is temporarily blocked)

It is possible to temporarily disable the interlock function via button/contact

- menu ADVSSIO1/SIO2/SI3:
select the INKE (Interlock Exclusion) item
Closing the IO1/IO2//3 output on +24 V will disable the interlock function.

10.4.1 Interlock operation

The interlocked automations will open one at a time, waiting until the other automation is closed before opening.
NOTE: It is important to establish the correct direction of travel by indicating the internal and external automation, then correctly setting the internal and external radar as these choices affect the interlock's operating logic.

Starting from the rest state, in which both automations are closed, the first to receive an open command starts the opening manoeuvre. The other automation, on the other hand, goes into the 'locked' state where it does not accept any opening commands from the OP-I OP-E contacts. It is however possible to open (for safety reasons etc) using the KO priority open command.
Once the opening door has reached the open position, its radar signals and safety lock outside the interlocking compartment are disabled, this is in order to facilitate prompt closing.
The signals will remain disabled for the entire closing manoeuvre and for the subsequent opening/closing of the other door.
Once the other door has been opened/closed all the signals are re-enabled.

11.1 Preliminary checks

At the end of the installation activities, move the doors manually and check that the movement is regular and without friction.
Check the structure robustness and the correct fastening of all the screws.
Check that electrical connections have been carried out correctly.
N.B. For doors with emergency exits with one leaf and left opening, the carriage must be fastened to the upper part of the belt, as indicated in the figure.
11.2 Before connecting possible safety devices, leave the jumpers on the safety terminal boards of the electronic control TS-CS-I, TS-CS-E, TS-OS-L, TS-OS-R).
N.B. The first opening and closing manoeuvre is carried out with low speed to enable automatic detection of the stop measurements
11.3 To ensure that the electronic control has the factory settings, restore the values using the menu:

MEM > FSET > YES (confirm by pressing ENTER for 1 second).
11.4 Carry out menu adjustments as indicated in chapter 8 . Use the PP button to give the opening commands and check that the door is working properly. N.B. The automation automatically recognises possible obstacles during the closing (movement inversion) and opening manoeuvre (movement stops).
11.5 Connect the command and safety devices one at a time to protect the door closing manoeuvre, as indicated in chapter 7.5 and check its correct operation.
N.B. Check that the passage compartment is correctly protected by safety sensors, in compliance with the provisions of the European standard EN16005 (Annex C).
11.6 Connect the safety devices one at a time to protect the door opening manoeuvre, as indicated in chapter 7.6 and check its correct operation.
N.B. In case the distances between the door and the fixed parts comply with the European standard EN16005 (chapter 4.6.2.1.a), safety sensors in opening are not necessary ($\mathrm{X} \leq 100$ and $\mathrm{Y} \geq 200$).
11.7 Connect the functions selector as indicated in chapter 7.4.
11.8 When start-up is complete, deliver the instruction manual to the manager of the automatic door, including the warnings and information necessary to maintain safety and functionality of the automatic door.
N.B. The manufacturer of the automatic sliding door must add its identification label of the system..

Other than the following list of possible problems, the warnings shown on the display are available, as indicated in chapter 9 .

Problem	Possible cause	Intervention
The automation does not open or close.	No mains power supply (display off).	Check the presence of the mains power supply.
	Accessories outside the short circuit.	Disconnect all the accessories from the terminals $-24 \mathrm{~V} /+24 \mathrm{~V}$ and reconnect them one at a time (check the presence of 24 V voltage).
	The door is locked with latches or locks.	Check that the doors move freely.
The automation does not carry out the functions set.	Functions selector with wrong setting.	Check and correct the functions selector settings.
	Command or safety devices are always activated.	Disconnect the devices from the terminal boards and check the door's operation.
Movement of the doors is not linear or movement is inverted for no reason.	Automation did not correctly detect the stop measurements.	Reset by first switching off the automation then switching it on.
The automation opens but does not close.	The safety devices test causes anomalies.	Bridge one contact at a time TS/OS-R, TS/OS-L, TS/ CS-E, TS/CS-I.
	The opening devices are activated.	Check that the opening sensors are not subject to vibrations, do not make false detections or the presence of objects in motion in the action range.
	Automatic closure is not working.	Check the settings of the functions selector.
Safety devices do not intervene.	Wrong connections between the safety devices and electronic control.	Check that the safety contacts of the devices are correctly connected to the terminal boards and the relevant jumpers were removed.
The automation opens by itself.	The opening and safety devices are unstable or detect bodies in motion.	Check that the opening sensors are not subject to vibrations, do not make false detections or the presence of bodies in motion in the action range.
	Automation has detected an anomaly.	Check the presence of the power supply. Check the battery connection and its efficiency.
The locking device does not lock or does not unlock the doors.	Wrong connection of the locking device on electronic control.	Check correct connection of the cable colours on the locking device.
	The lock coupling brackets, fastened on the carriages, do not release from the locking device.	Check adjustment of the position of the lock coupling brackets.
	Pulling the unlocking cord, the doors do not unlock.	Check correct fastening of the unlocking cord on the lock device.

To guarantee the correct operation and safe use of the automatic door, as outlined in the European standard EN16005, the owner must have professionally competent staff carry out the routine maintenance.
Except for routine cleaning activities of the fixture and the floor guiding device, it is the owner's responsibility that all the maintenance and repair activities must be carried out by professionally competent staff.
The following table lists the activities related to ordinary maintenance, and the intervention frequency referring to the automatic sliding door with operation in standard conditions. In case of more burdensome conditions or sporadic use of the automatic sliding door, the frequency of the maintenance intervention can be coherently adjusted.

Activity	Frequency
Disconnect the power supply, open the automation and carry out the	Every 6 months or every 500,000 manoeuvres.
following checks and adjustments.	
- Check the correct fastening of all the screws on the components inside the	
automation.	
- Check the cleaning of the carriages and the sliding guide.	
- Check the correct tightening of the belt.	
- Check the wear status of the belt and the wheels of the carriages (if neces-	
sary, replace them).	
- Check the correct fastening of the doors on the carriages.	
- If present, check the lock coupling and operation of the unlocking cord.	
Connect the power supply and carry out the following checks and adjust- ments. - Check the correct operation of the command and safety devices.	Every 6 months or every 500,000 manoeuvres. - Check that the detection area of the safety sensors complies with the provisions of the European standard EN16005. - If present, check that the locking device is working correctly. - Check that the battery-powered device is working properly (if necessary, replace the battery).

All maintenance, replacement, repair, upgrading, etc. operations must be written on the maintenance register, as requested by the European standard EN16005, and delivered to the owner of the automatic sliding door.
For possible repair or replacement of products, original spare parts must be used.
13.1 DISPOSAL OF PRODUCTS

INFORMATION FOR USERS
"Implementation of Directive 2012/19/EU on waste electrical and electronic equipment (WEEE)"

The crossed bar symbol on the equipment indicates the product at the end of its useful life must be collected separately from other waste. The user should therefore hand over the equipment will its components at the end of its useful life to suitable electronic and electro-technical differentiated waste collection centres, or send it back to the dealer on purchasing new, equivalent equipment, exchanging one for another, or 1 to zero for equipment with its longest side less than 25 cm . Adequate differentiated waste for subsequent sending of the decommissioned equipment for recycling, treatment or disposal which is environmentally friendly contributes to avoiding possible negative effects on the environment and health and encourages recycling of materials composing the equipment.

MAINTENANCE REGISTER

FOR AUTOMATIC PEDESTRIAN DOORS IN COMPLIANCE WITH THE MACHINERY DIRECTIVE 2006/42/CE AND THE EUROPEAN REGULATION EN 16005

This maintenance register contains the technical references and records of the installation, maintenance, repair and modification activities and should be made available for possible inspections by authorised bodies.

TECHNICAL DATA OF THE AUTOMATIC DOOR AND INSTALLATION	
Manufacturer / Installer:	
	Name, address, contact person
Customer / Owner:	
	Name, address, contact person
Order number:	
	Number and date of order
Name and description:	
	Type of door
Dimensions and weight:	
	Dimensions of the passage compartment, dimensions and weight of the doors
Serial number:	
	Univocal identification number of the door
Location:	
	Installation address

LIST OF COMPONENTS INSTALLED
The technical characteristics and performance of the components listed below are documented in the relevant installation manuals and/or on the label placed on the component.

Automation:		Model, type, serial number
Motor:		Model, type, serial number
Electronic control:		Model, type, serial number
Safety devices:		Model, type, serial number
Command devices:		
Various devices:		
Other:		Model, type, serial number

DESCRIPTION OF OPERATION Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use. [] Installation		
[] Start-up		
[] Adjustment		
[] Maintenance		
[] Repair		
[] Modification		
	Technician's signature	
Date		

DESCRIPTION OF OPERATION
Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use.

[] Installation		
[] Start-up		
[] Adjustment		
[] Maintenance		
[] Repair		
[] Modification		
	Technician's signature	
Date		

DESCRIPTION OF OPERATION Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use. [] Installation [] Start-up
[] Adjustment
[] Maintenance
[] Repair
[] Modification

DESCRIPTION OF OPERATION Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use.		
[] Installation		
[] Start-up		
[] Adjustment		
[] Maintenance		
[] Repair		
[] Modification		
	Technician's signature	
Dater's signature		

DESCRIPTION OF OPERATION
Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use.

[] Installation		
[] Start-up		
[] Adjustment		
[] Maintenance		
[] Repair		
[] Modification		
	Techician's signature	
Date		

DESCRIPTION OF OPERATION Tick the box corresponding to the intervention carried out. Describe possible residual risks and/or foreseeable improper use.		
[] Installation		
[] Start-up		
[] Adjustment		
[] Maintenance		
[] Repair		
[] Modification		
Date		

DECLARATION OF INCORPORATION

Machines Directive 2006/42/EC, Annex II-B

MyOne S.r.l.

Via Abbate Tommaso, 52-30020 Quarto d'Altino (VE) - Italien
Hereby declares that:
The automation product for pedestrian sliding doors type:
LUCE W, LUCE SH W, LUCE WP
Has been built to be incorporated into a machine or to be assembled with other machinery or components to constitute a machine in accordance with Directive 2006/42/EC.

The manufacturer of the power operated pedestrian door must declare its conformity in accordance with Directive 2006/42/EC (Annex II-A), before putting the machine into service.

It complies with the applicable essential safety requirements set out in Chapter 1 of Annex I to Directive 2006/42/EC.
It complies with the Electromagnetic Compatibility Directive 2014/30/EU.
It complies with the following harmonised standards:
EN 16005 Power operated pedestrian doorsets - Safety in use - Requirements and test methods (chapters: 4.2, 4.3.1, 4.3.2, 4.3.3, 4.4.1, 4.4.4, 4.4.5, 4.6.1, 4.6.2, 4.6.4, 4.6.7, 4.6.8, 4.7.2.1, 4.7.2.2, 5.1, 5.2, 5.3, 5.4, 5.5.3, 5.6, 5.8.1, 5.8.2, 5.8.3, 5.8.4, 5.10)

EN 60335-2-103 Household and similar electrical appliances - Safety. Part 2: Particular requirements for drives for gates, doors and windows

The technical documentation complies with Annex VII-B of Directive 2006/42/EC
The technical documentation is managed by:
Daniele Vanin
with registered office in Via Abbate Tommaso, 52-30020 Quarto d'Altino (VE) - ITALY
A copy of the technical documentation shall be provided to the competent national authorities following a duly motivated request.

Place and date:
Quarto d'Altino, 2023-09-20

GENERAL SAFETY WARNINGS

AUTOMATION FOR SLIDING DOORS

These warnings are an integral and essential part of the product and must be delivered to the user．
Read them carefully as they provide important instructions on safety of installation，use and maintenance．
You must keep these instructions and give them to anyone taking over the use of the system．
This product should only be intended for the use for which it was expressly designed．
Any other use should be considered misuse and therefore hazardous．
The manufacturer cannot be considered responsible for any damage caused by improper，wrong or unreasonable use．
This product is not intended for use by people（including children）whose physical，sensory or mental capacities are reduced，or with no experience or know－how，unless they can benefit from the intermediation of a person responsible for their safety，supervision or instructions regarding use of the device．
Avoid working near hinges or mechanical units in motion．
Do not enter the action range of the automated door while it is in motion．
Do not resist motion of the automated door since it can cause hazardous situations．
Do not allow children to play or stay within the action range of the automated door．
Keep remote controls and／or any other command devices out of reach of children，to prevent the automated door from being involuntarily activated．
In case of a fault or poor operation of the product，disconnect the power supply switch，refraining from any attempt to repair it or direct intervention and contact only qualified staff． Non－compliance with the above can create dangerous situations．
Any intervention for cleaning，maintenance or repair must be carried out by qualified staff．To guarantee the efficiency of the system and its correct operation，it is indispensable to comply with the manufacturer＇s instructions，having qualified staff carry out periodic maintenance of the automated door．In particular，you are advised to carry out periodic testing to ensure that the safety devices are all working properly．Installation，maintenance and repair operations must be documented．

ELECTRIC LOCK MANUAL UNLOCKING

－In case of emergency，maintenance or malfunctioning，pull the lever L， position it as in the figure and move the doors manually．To lock it，carry out the opposite manoeuvre．
ATTENTION：Carry out locking or unlocking operations of the door with the motor switched off．

FUNCTIONS SELECTOR

Symbol	Description
COOR OPEN	
The door is open and remains open．	

myone

